Polynomial clone reducibility
نویسندگان
چکیده
منابع مشابه
Polynomial clone reducibility
Polynomial-clone reducibilities are generalizations of the truth-table reducibilities. A polynomial clone is a set of functions over a finite set X that is closed under composition and contains all the constant and projection functions. For a fixed polynomial clone C, a sequence B ∈ X is C-reducible to A ∈ X if there is an algorithm that computes B from A using only effectively selected functio...
متن کاملOn Polynomial-Time Relation Reducibility
We study the notion of polynomial-time relation reducibility among computable equivalence relations. We identify some benchmark equivalence relations and show that the reducibility hierarchy has a rich structure. Specifically, we embed the partial order of all polynomial-time computable sets into the polynomial-time relation reducibility hierarchy between two benchmark equivalence relations Eλ ...
متن کاملOn ~-reducibility versus Polynomial Time Many-one Reducibility*
We prove that each element of a class of f,anctions (denoted by NPCtP), whose graphs can be accepted in nondeterministic polynomial time, can be evaluated in deterministic polynomial time if and only if '/-reducibility is equivalent to polynomial time many-one reducibility. We also modify the proof technique used to obtain part of this result to obtain the stronger result that if every ,/-reduc...
متن کاملEnumeration Reducibility with Polynomial Time Bounds
We introduce polynomial time enumeration reducibility (≤pe) and we retrace Selman’s analysis of this reducibility and its relationship with non deterministic polynomial time conjunctive reducibility. We discuss the basic properties of the degree structure induced by ≤pe over the computable sets and we show how to construct meets and joins. We are thus able to prove that this degree structure is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Mathematical Logic
سال: 2013
ISSN: 0933-5846,1432-0665
DOI: 10.1007/s00153-013-0351-x